{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# MDS\n", "[大图](mds.html), [下载](origin_files/mds.ipynb)" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
012345678910111213141516171819
00.0000003.60555111.4017546.0827633.00000013.45362411.4017547.0710688.2462119.21954411.18034011.4017548.54400415.0000006.32455513.03840510.44030715.0332966.40312412.083046
13.6055510.00000014.8660699.4868336.32455514.42220514.0356699.2195446.08276312.08304614.00000012.20655611.04536116.5529459.43398116.6433178.00000018.0277567.61577314.317821
211.40175414.8660690.0000008.0622589.84885819.10497312.6491118.24621119.2353845.00000011.70470018.00000012.04159518.6815425.8309524.47213621.47091112.80624814.31782114.560220
36.0827639.4868338.0622580.0000003.16227811.4017546.4031249.21954412.0415958.9442725.83095210.0498764.47213611.6619046.4031247.81025014.2126709.2195446.3245557.810250
43.0000006.3245559.8488583.1622780.00000011.6619048.5440048.0622589.4339819.0553858.2462119.8488585.83095212.7279226.08276310.63014611.66190412.0415955.0990209.433981
513.45362414.42220519.10497311.40175411.6619040.0000007.28011019.72308311.18034020.2484578.2462112.2360687.0710683.16227817.46424917.11724312.00000010.8166547.0710685.385165
611.40175414.03566912.6491116.4031248.5440047.2801100.00000015.62049913.92838815.0000001.0000007.2111033.0000006.08276312.72792210.00000015.6524764.4721367.2801102.000000
77.0710689.2195448.2462119.2195448.06225819.72308315.6204990.00000015.0332963.60555115.00000017.88854413.45362420.6155283.16227812.00000017.11724317.88854413.00000016.970563
88.2462116.08276319.23538412.0415959.43398111.18034013.92838815.0332960.00000017.46424914.3178219.05538511.18034014.03566914.56022019.8494332.23606818.3847766.70820413.341664
99.21954412.0830465.0000008.9442729.05538520.24845715.0000003.60555117.4642490.00000014.21267018.68154213.41640820.5912603.0000009.21954419.64688316.40121914.14213616.643317
1011.18034014.00000011.7047005.8309528.2462118.2462111.00000015.00000014.31782114.2126700.0000008.0622583.1622787.07106812.0415959.00000016.1245154.1231067.6157733.000000
1111.40175412.20655618.00000010.0498769.8488582.2360687.21110317.8885449.05538518.6815428.0622580.0000006.0827635.00000015.81138816.49242310.04987611.3137085.0000005.656854
128.54400411.04536112.0415954.4721365.8309527.0710683.00000013.45362411.18034013.4164083.1622786.0827630.0000007.21110310.81665410.44030713.0384057.2801104.4721363.605551
1315.00000016.55294518.68154211.66190412.7279223.1622786.08276320.61552814.03566920.5912607.0710685.0000007.2111030.00000018.02775616.03122015.0332968.5440048.9442724.123106
146.3245559.4339815.8309526.4031246.08276317.46424912.7279223.16227814.5602203.00000012.04159515.81138810.81665418.0277560.0000009.05538516.76305514.76482311.18034014.212670
1513.03840516.6433174.4721367.81025010.63014617.11724310.00000012.00000019.8494339.2195449.00000016.49242310.44030716.0312209.0553850.00000022.0227168.94427213.89244412.000000
1610.4403078.00000021.47091114.21267011.66190412.00000015.65247617.1172432.23606819.64688316.12451510.04987613.03840515.03329616.76305522.0227160.00000020.1246128.60232514.866069
1715.03329618.02775612.8062489.21954412.04159510.8166544.47213617.88854418.38477616.4012194.12310611.3137087.2801108.54400414.7648238.94427220.1246120.00000011.7047005.656854
186.4031247.61577314.3178216.3245555.0990207.0710687.28011013.0000006.70820414.1421367.6157735.0000004.4721368.94427211.18034013.8924448.60232511.7047000.0000007.000000
1912.08304614.31782114.5602207.8102509.4339815.3851652.00000016.97056313.34166416.6433173.0000005.6568543.6055514.12310614.21267012.00000014.8660695.6568547.0000000.000000
\n", "
" ], "text/plain": [ " 0 1 2 3 4 5 \\\n", "0 0.000000 3.605551 11.401754 6.082763 3.000000 13.453624 \n", "1 3.605551 0.000000 14.866069 9.486833 6.324555 14.422205 \n", "2 11.401754 14.866069 0.000000 8.062258 9.848858 19.104973 \n", "3 6.082763 9.486833 8.062258 0.000000 3.162278 11.401754 \n", "4 3.000000 6.324555 9.848858 3.162278 0.000000 11.661904 \n", "5 13.453624 14.422205 19.104973 11.401754 11.661904 0.000000 \n", "6 11.401754 14.035669 12.649111 6.403124 8.544004 7.280110 \n", "7 7.071068 9.219544 8.246211 9.219544 8.062258 19.723083 \n", "8 8.246211 6.082763 19.235384 12.041595 9.433981 11.180340 \n", "9 9.219544 12.083046 5.000000 8.944272 9.055385 20.248457 \n", "10 11.180340 14.000000 11.704700 5.830952 8.246211 8.246211 \n", "11 11.401754 12.206556 18.000000 10.049876 9.848858 2.236068 \n", "12 8.544004 11.045361 12.041595 4.472136 5.830952 7.071068 \n", "13 15.000000 16.552945 18.681542 11.661904 12.727922 3.162278 \n", "14 6.324555 9.433981 5.830952 6.403124 6.082763 17.464249 \n", "15 13.038405 16.643317 4.472136 7.810250 10.630146 17.117243 \n", "16 10.440307 8.000000 21.470911 14.212670 11.661904 12.000000 \n", "17 15.033296 18.027756 12.806248 9.219544 12.041595 10.816654 \n", "18 6.403124 7.615773 14.317821 6.324555 5.099020 7.071068 \n", "19 12.083046 14.317821 14.560220 7.810250 9.433981 5.385165 \n", "\n", " 6 7 8 9 10 11 \\\n", "0 11.401754 7.071068 8.246211 9.219544 11.180340 11.401754 \n", "1 14.035669 9.219544 6.082763 12.083046 14.000000 12.206556 \n", "2 12.649111 8.246211 19.235384 5.000000 11.704700 18.000000 \n", "3 6.403124 9.219544 12.041595 8.944272 5.830952 10.049876 \n", "4 8.544004 8.062258 9.433981 9.055385 8.246211 9.848858 \n", "5 7.280110 19.723083 11.180340 20.248457 8.246211 2.236068 \n", "6 0.000000 15.620499 13.928388 15.000000 1.000000 7.211103 \n", "7 15.620499 0.000000 15.033296 3.605551 15.000000 17.888544 \n", "8 13.928388 15.033296 0.000000 17.464249 14.317821 9.055385 \n", "9 15.000000 3.605551 17.464249 0.000000 14.212670 18.681542 \n", "10 1.000000 15.000000 14.317821 14.212670 0.000000 8.062258 \n", "11 7.211103 17.888544 9.055385 18.681542 8.062258 0.000000 \n", "12 3.000000 13.453624 11.180340 13.416408 3.162278 6.082763 \n", "13 6.082763 20.615528 14.035669 20.591260 7.071068 5.000000 \n", "14 12.727922 3.162278 14.560220 3.000000 12.041595 15.811388 \n", "15 10.000000 12.000000 19.849433 9.219544 9.000000 16.492423 \n", "16 15.652476 17.117243 2.236068 19.646883 16.124515 10.049876 \n", "17 4.472136 17.888544 18.384776 16.401219 4.123106 11.313708 \n", "18 7.280110 13.000000 6.708204 14.142136 7.615773 5.000000 \n", "19 2.000000 16.970563 13.341664 16.643317 3.000000 5.656854 \n", "\n", " 12 13 14 15 16 17 \\\n", "0 8.544004 15.000000 6.324555 13.038405 10.440307 15.033296 \n", "1 11.045361 16.552945 9.433981 16.643317 8.000000 18.027756 \n", "2 12.041595 18.681542 5.830952 4.472136 21.470911 12.806248 \n", "3 4.472136 11.661904 6.403124 7.810250 14.212670 9.219544 \n", "4 5.830952 12.727922 6.082763 10.630146 11.661904 12.041595 \n", "5 7.071068 3.162278 17.464249 17.117243 12.000000 10.816654 \n", "6 3.000000 6.082763 12.727922 10.000000 15.652476 4.472136 \n", "7 13.453624 20.615528 3.162278 12.000000 17.117243 17.888544 \n", "8 11.180340 14.035669 14.560220 19.849433 2.236068 18.384776 \n", "9 13.416408 20.591260 3.000000 9.219544 19.646883 16.401219 \n", "10 3.162278 7.071068 12.041595 9.000000 16.124515 4.123106 \n", "11 6.082763 5.000000 15.811388 16.492423 10.049876 11.313708 \n", "12 0.000000 7.211103 10.816654 10.440307 13.038405 7.280110 \n", "13 7.211103 0.000000 18.027756 16.031220 15.033296 8.544004 \n", "14 10.816654 18.027756 0.000000 9.055385 16.763055 14.764823 \n", "15 10.440307 16.031220 9.055385 0.000000 22.022716 8.944272 \n", "16 13.038405 15.033296 16.763055 22.022716 0.000000 20.124612 \n", "17 7.280110 8.544004 14.764823 8.944272 20.124612 0.000000 \n", "18 4.472136 8.944272 11.180340 13.892444 8.602325 11.704700 \n", "19 3.605551 4.123106 14.212670 12.000000 14.866069 5.656854 \n", "\n", " 18 19 \n", "0 6.403124 12.083046 \n", "1 7.615773 14.317821 \n", "2 14.317821 14.560220 \n", "3 6.324555 7.810250 \n", "4 5.099020 9.433981 \n", "5 7.071068 5.385165 \n", "6 7.280110 2.000000 \n", "7 13.000000 16.970563 \n", "8 6.708204 13.341664 \n", "9 14.142136 16.643317 \n", "10 7.615773 3.000000 \n", "11 5.000000 5.656854 \n", "12 4.472136 3.605551 \n", "13 8.944272 4.123106 \n", "14 11.180340 14.212670 \n", "15 13.892444 12.000000 \n", "16 8.602325 14.866069 \n", "17 11.704700 5.656854 \n", "18 0.000000 7.000000 \n", "19 7.000000 0.000000 " ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import numpy as np\n", "import pandas as pd\n", "from matplotlib import pyplot as plt\n", "from matplotlib.collections import LineCollection\n", "\n", "from sklearn import manifold\n", "from sklearn.metrics import euclidean_distances\n", "from sklearn.decomposition import PCA\n", "\n", "n_samples = 20\n", "seed = np.random.RandomState(seed=3)\n", "X_true = seed.randint(0, 20, 2 * n_samples).astype(np.float)\n", "X_true = X_true.reshape((n_samples, 2))\n", "# Center the data\n", "X_true -= X_true.mean()\n", "\n", "similarities = euclidean_distances(X_true)\n", "pd.DataFrame(similarities)" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [], "source": [ "mds = manifold.MDS(n_components=2, max_iter=3000, eps=1e-9, random_state=seed,\n", " dissimilarity=\"precomputed\", n_jobs=1)\n", "pos = mds.fit(similarities).embedding_\n", "\n", "nmds = manifold.MDS(n_components=2, metric=False, max_iter=3000, eps=1e-12,\n", " dissimilarity=\"precomputed\", random_state=seed, n_jobs=1,\n", " n_init=1)\n", "npos = nmds.fit_transform(similarities, init=pos)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "dissimilarity=\"precomputed\"表示输入的是已经计算好的距离矩阵 \n", "metric=False表示是分类数据,metric=True表示是连续数据 \n", "\n" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "1.6871996034640421e-07" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "mds.stress_#压力值,可以用来计算应当降为多少维" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Rescale the data\n", "pos *= np.sqrt((X_true ** 2).sum()) / np.sqrt((pos ** 2).sum())\n", "npos *= np.sqrt((X_true ** 2).sum()) / np.sqrt((npos ** 2).sum())" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Rotate the data\n", "pca = PCA(n_components=2)\n", "X_true = pca.fit_transform(X_true)\n", "\n", "pos = pca.fit_transform(pos)\n", "\n", "npos = pca.fit_transform(npos)\n", "\n" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAecAAAFCCAYAAADL3BUJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAH4xJREFUeJzt3X9s3Hed5/HX+1o30U5s01JDh7aiZbeqzpyuBEYFrt6q\nhVJKxJEFzS7hdLvdNXfZLj+USpwEc4kQglgDuwd7LCxUgVYHCBVuZylUkIaWoyuvpQM6ybUQDGzT\nblFDfK1LYeyYS3DY9/0xX4fp5DvjSTzf7/fznXk+JMszn+/H4/f4O57XfH98Pl9zdwEAgHD8q6wL\nAAAAz0U4AwAQGMIZAIDAEM4AAASGcAYAIDCEMwAAgSGcAQAIDOEMAEBgCGcAAAJzftYFnIuLL77Y\nr7jiiqzLAADgrBw8ePAZd59Yr18uw/mKK65QvV7PugwAAM6Kmf20l37s1gYAIDCEMwAAgSGcAQAI\nDOEMAEBgCGcAAAJDOAMAEJhcDqXCxjUaJ1SrzWth4biKxS0qlyc1Pr4567IAACKch9LMzKyq1Tmt\nrKyebtu164AqlSnt3n19hpUBACTCeejMzMxqz54Hz2hfWVk93U5AA0C2OOY8RBqNE6pW57r2qVbn\ntLR0MqWKAABxCOchUqvNP2dXdpyVlVXVavMpVQQAiEM4D5GFheM99ltOuBIAQDeE8xApFrf02G80\n4UoAAN0QzkOkXJ5UoTDStU+hMKJyeTKligAAcQjnITI+vlmVylTXPpXKlMbGNqVUEQAgTl/C2czu\nMrOnzexwS9tFZvaAmT0afb+ww8/eGvV51Mxu7Uc96Gz37uu1d++NZ2xBFwoj2rv3RoZRAUAAzN03\n/iBm10s6Lunz7v5vora/lPSsu3/YzN4n6UJ3f2/bz10kqS6pJMklHZT0Cnf/RbffVyqVvF6vb7ju\nYba0dDKaIWxZxeKoyuVJtpgBIGFmdtDdS+v168skJO4+a2ZXtDVvl3RDdPtzkv5B0nvb+rxe0gPu\n/qwkmdkDkm6RdHc/6kJnY2ObND29NesyAAAxkjzm/EJ3X5Ck6PsLYvpcKunJlvtHo7YzmNlOM6ub\nWX1xcbHvxQIAEIqsTwizmLbY/ezuvs/dS+5empiYSLgsAACyk2Q4P2VmRUmKvj8d0+eopMtb7l8m\n6ViCNQEAELwkw/leSWtnX98q6Wsxfb4p6WYzuzA6m/vmqA0AgKHVr6FUd0v635KuNrOjZvZ2SR+W\n9Doze1TS66L7MrOSmX1WkqITwT4k6aHo64NrJ4cBADCs+jKUKm0MpQIA5FGvQ6myPiEMAAC0IZwB\nAAhMXyYhAc5Wo3EimqHsuIrFLSqXJzU+vjnrsgAgCIQzUjczM6tqdU4rK6un23btOqBKZYq5vQFA\nhDNSNjMzqz17HjyjfWVl9XQ7AQ1g2HHMGalpNE6oWp3r2qdandPS0smUKgKAMBHOSE2tNv+cXdlx\nVlZWVavNp1QRAISJcEZqFhaO99hvOeFKACBshDNSUyxu6bHfaMKVAEDYCGekplyeVKEw0rVPoTCi\ncnkypYoAIEyEM1IzPr5ZlcpU1z6VypTGxjalVBEAhImhVEjV2jCp9nHOhcII45wHAJPLAP3BhS+Q\niaWlk9Gb+LKKxVGVy5NsMedc3OQyfOgCnqvXC1+w5YxMjI1t0vT01qzLQJ8wuQzQXxxzBrAhTC4D\n9B/hDGBDmFwG6D/CGcCGMLkM0H+EM4ANYXIZoP8IZwAbwuQyQP8RzgA2hMllgP5jKBWADWNyGaC/\nmIQEQN8wuQzQHZOQAEgdk8sA/cExZwAAApNoOJvZ1Wb2cMvXkpnd3tbnBjNrtPR5f5I1AQAQukR3\na7v7TyS9TJLM7DxJP5N0T0zXf3T3NyZZCwAAeZHmbu3XSnrM3X+a4u8EACB30gznHZLu7rDs1Wb2\niJndZ2YvjetgZjvNrG5m9cXFxeSqBAAgY6mEs5ldIOlNkv4uZvEhSS9292skfULSV+Mew933uXvJ\n3UsTExPJFQsAQMbS2nJ+g6RD7v5U+wJ3X3L349Ht/ZJGzOzilOoCACA4aYXz29Rhl7aZXWJmFt2+\nNqrp5ynVBQBAcBKfhMTMfkfS6yT9eUvbbZLk7ndIKkv6CzM7Jen/SdrheZy2DACAPkk8nN39V5Ke\n39Z2R8vtT0r6ZNJ1AACQF8wQBgBAYAhnAAACQzgDABAYwhkAgMAQzgAABIZwBgAgMIQzAACBIZwB\nAAgM4QwAQGAIZwAAAkM4AwAQGMIZAIDAEM4AAASGcAYAIDCEMwAAgSGcAQAIDOEMAEBgCGcAAAJD\nOAMAEBjCGQCAwBDOAAAEhnAGACAwhDMAAIE5P+sCAKCbRuOEarV5LSwcV7G4ReXypMbHN2ddFpCo\nxMPZzJ6QtCzpN5JOuXupbblJ+rikbZJ+JelP3f1Q0nUBCN/MzKyq1TmtrKyebtu164AqlSnt3n19\nhpUByUpry/lGd3+mw7I3SLoq+nqlpE9H3wEMsZmZWe3Z8+AZ7Ssrq6fbCWgMqhCOOW+X9Hlv+o6k\n55lZMeuiAGSn0TihanWua59qdU5LSydTqghIVxrh7JLuN7ODZrYzZvmlkp5suX80ansOM9tpZnUz\nqy8uLiZUKoAQ1Grzz9mVHWdlZVW12nxKFQHpSiOcr3P3l6u5+/qdZta+H8pifsbPaHDf5+4ldy9N\nTEwkUSeAQCwsHO+x33LClQDZSDyc3f1Y9P1pSfdIuraty1FJl7fcv0zSsaTrAhCuYnFLj/1GE64E\nyEai4WxmBTMbXbst6WZJh9u63SvpT6zpVZIa7r6QZF0AwlYuT6pQGOnap1AYUbk8mVJFQLqS3nJ+\noaQ5M3tE0vckfcPdD5jZbWZ2W9Rnv6THJR2R9BlJ70i4JgCBGx/frEplqmufSmVKY2ObUqoISFei\nQ6nc/XFJ18S039Fy2yW9M8k6AOTP2jCp9nHOhcII45wx8KyZjflSKpW8Xq9nXQaAFCwtnYxmCFtW\nsTiqcnmSLWbklpkdbJ+MKw7TdwII2tjYJk1Pb826DCBVIUxCAgAAWrDlDADIrUG9MArhDADIpUG+\nMArhDADInUG/MArHnAEAuTIMF0YhnAEAuTIMF0YhnAEAuTIMF0YhnAEAuTIMF0YhnAEAuTIMF0Yh\nnAEAuTIMF0ZhKBUAIHcG/cIoXPgCAJBbebswChe+AAAMvEG9MArHnAEACAzhDABAYAhnAAACQzgD\nABAYwhkAgMAQzgAABIZwBgAgMIQzAACBYRISDKxG40Q0c9BxFYtbVC5Panx8c9ZlAcC6EgtnM7tc\n0uclXSLpXyTtc/ePt/W5QdLXJP1z1PQVd/9gUjVheMzMzJ4x5+6uXQcGYs5dAIMvyS3nU5Le4+6H\nzGxU0kEze8Dd59v6/aO7vzHBOjBkZmZmtWfPg2e0r6ysnm4noAGELLFjzu6+4O6HotvLkn4k6dKk\nfh8gNXdlV6tzXftUq3NaWjqZUkUAcPZSOSHMzK6QtFXSd2MWv9rMHjGz+8zspV0eY6eZ1c2svri4\nmFClyLtabf45u7LjrKysqlZr34EDAOFIPJzNbIukv5d0u7svtS0+JOnF7n6NpE9I+mqnx3H3fe5e\ncvfSxMREcgUj1xYWjvfYbznhSgDg3CV6traZjagZzF9096+0L28Na3ffb2afMrOL3f2ZJOvC4CoW\nt/TYbzThSrCGs+aBs2funswDm5mkz0l61t1v79DnEklPubub2bWSampuSXctqlQqeb1e73vNyL9G\n44QuvfRjXXdtFwojOnbsPUFfkH1QxJ01XyiMcNY8hpaZHXT30nr9ktytfZ2kP5b0GjN7OPraZma3\nmdltUZ+ypMNm9oikv5G0Y71gBroZH9+sSmWqa59KZYpgTsHaWfPtH5TWzpqfmZnNqDIgfIltOSeJ\nLWeshy22bLEHA4jX65YzM4RhIO3efb3e/e5XRsc6l1UsjqpcniQIUnI2Z81PT29NqSogPwhnDKyx\nsU288WeEs+aBjeHCFwD6jrPmgY0hnAH0Xbk8qUJhpGufQmFE5fJkShUB+UI4A+g7zpoHNoZjzgAS\nsXZWPGfNDyYml0kWQ6kAJGpp6SRnzQ8YhiqeO4ZSAQgCZ80PFi7Jmg6OOQMAesIlWdNDOAMAesIl\nWdNDOAMAesLkMukhnAEAPWFymfQQzgCAnjC5THoIZwBAT5hcJj0MpUoZA/cB5BmTy6SDSUhSxMB9\nAINi0CeXSWpDqtdJSAjnlHQauL9m794bCWgACECSG1K9hjPHnFPAwH0AyIe1Dan28dxrM6DNzMym\nUgfhnAIG7gNA+ELakCKcU8DAfQAIX0gbUoRzChi4DwDhC2lDinBOAQP3ASB8IW1IEc4pYOA+AIQv\npA0pwjklu3dfr717bzxjxRcKIwyjAoAAhLQhlfg4ZzO7RdLHJZ0n6bPu/uG25ZskfV7SKyT9XNJb\n3f2Jbo+Zx3HOawZ94D4A5F0I45wTDWczO0/SP0l6naSjkh6S9DZ3n2/p8w5J/9bdbzOzHZLe7O5v\n7fa4eQ5nAED4ktqQ6jWck55b+1pJR9z98aioL0naLqn1PPTtkj4Q3a5J+qSZmedx6jIAwEAYG9uk\n6emtmf3+pI85XyrpyZb7R6O22D7ufkpSQ9Lz2x/IzHaaWd3M6ouLiwmVCwBA9pIOZ4tpa98i7qWP\n3H2fu5fcvTQxMdGX4gAACFHS4XxU0uUt9y+TdKxTHzM7X9K4pGcTrgsAgGAlHc4PSbrKzK40swsk\n7ZB0b1ufeyXdGt0uS/o2x5sBAMMs0RPC3P2Umb1L0jfVHEp1l7v/0Mw+KKnu7vdKulPSF8zsiJpb\nzDuSrAkAgNAlfba23H2/pP1tbe9vuX1C0h8mXQcAAHnBDGEAAASGcAYAIDCEMwAAgUn8mHPIGo0T\n0fRsx1UsblG5PKnx8c1ZlwUAGHJDG85xE5vv2nWgLxObA4jHB2KgN0MZzjMzs9qz58Ez2ldWVk+3\nE9BAf/GBGOjd0B1zbjROqFqd69qnWp3T0tLJlCoCBt/aB+LWYJZ++4F4ZmY2o8qAMA1dONdq82e8\nQbRbWVlVrTbftQ+A3vCBGDh7QxfOCwvHe+y3nHAlwHDgAzFw9oYunIvFLT32G024EmA48IEYOHtD\nF87l8qQKhZGufQqFEZXLkylVBAw2PhADZ2/ownl8fLMqlamufSqVKY2NbUqpImCw8YEYOHtDF85S\nc5jU3r03nvGGUSiMaO/eGxnWAfQRH4iBs2d5vHRyqVTyer2+4cdZWjoZTYiwrGJxVOXyJG8QQELi\nxjkXCiOMc8ZQMbOD7l5at98whzOAdPGBGMOu13AeyhnCgF4w1WT/jY1t0vT01qzLAIJHOAMxmGoS\nQJYIZ6ANc68DyNpQnq0NdMJUkwBCQDgDLZhqEkAICGegBVNNAggB4Qy0YKpJACEgnIEWTDUJIASE\nM9CCqSYBhCCRoVRm9leS/r2kX0t6TNKfufsvY/o9IWlZ0m8knepl1hQgaWvDpJhqEkBWEpm+08xu\nlvRtdz9lZh+RJHd/b0y/JySV3P2Zs3l8pu9EGphqEkC/ZTp9p7vf33L3O5LKSfweIElMNQkgK2kc\nc56WdF+HZS7pfjM7aGY7uz2Ime00s7qZ1RcXF/teJAAAoTjnLWcz+5akS2IW7Xb3r0V9dks6JemL\nHR7mOnc/ZmYvkPSAmf3Y3WfjOrr7Pkn7pOZu7XOtGwCA0J1zOLv7Td2Wm9mtkt4o6bXe4cC2ux+L\nvj9tZvdIulZSbDgDADAsEtmtbWa3SHqvpDe5+6869CmY2ejabUk3SzqcRD0AAORJUsecPylpVM1d\n1Q+b2R2SZGYvMrP9UZ8XSpozs0ckfU/SN9z9QEL1AACQG0mdrf17HdqPSdoW3X5c0jVJ/H4AAPKM\nGcIAAAgM4QwAQGAIZwAAAkM4AwAQGMIZAIDAEM4AAASGcAYAIDCEMwAAgSGcAQAIDOEMAEBgCGcA\nAAKTyNzaedNonFCtNq+FheMqFreoXJ7U+PjmrMsCAAypoQ/nmZlZVatzWllZPd22a9cBVSpT2r37\n+gwrAwAMq6EO55mZWe3Z8+AZ7Ssrq6fbCej1secBQBqG6b3G3D3rGs5aqVTyer2+ocdoNE7o0ks/\n9pwt5naFwoiOHXuPxsY2beh3DbK4PQ+Fwgh7HgD01aC815jZQXcvrddvaE8Iq9Xmuwaz1NyCrtXm\nU6oof9b2PLT/Hdf2PMzMzGZUGYBBMozvNUMbzgsLx3vst5xwJfnUaJxQtTrXtU+1OqelpZMpVQRg\nEA3re83QhnOxuKXHfqMJV5JP7HkAkIZhfa8Z2nAulydVKIx07VMojKhcnkyponxhzwOANAzre83Q\nhvP4+GZVKlNd+1QqU5wM1gF7HgCkYVjfa4Y2nKXmMKm9e288Ywu6UBjR3r035uoMwLTlYc9Do3FC\nd955SHv3zurOOw+p0TiRWS0Azk0e3muSMNTjnKVmQL/73a+Mxs4tq1gcVbk8yRbzOtb2PMSNE1+T\n5Z4HJpcBBkPo7zVJGfpwlqSxsU2ant6adRm5sxZyoY09ZHIZYLCE+l6TpKGdhAT9s7R0Mpg9D0wu\nAwyukN5rzlWvk5AktuVsZh+Q9J8lLUZN/9Xd98f0u0XSxyWdJ+mz7v7hpGpCMkLa83A2wy56rXmY\npgwEQhbSe03Skt6t/dfu/t86LTSz8yT9raTXSToq6SEzu9fdB2vAGlLT72EXHLsGkIWsz9a+VtIR\nd3/c3X8t6UuStmdcE3Ksn8MuhnHKQABhSDqc32Vm3zezu8zswpjll0p6suX+0ajtDGa208zqZlZf\nXFyM6wL0bdjFsE4ZCCAMGwpnM/uWmR2O+dou6dOSflfSyyQtSPpo3EPEtMWeoebu+9y95O6liYmJ\njZSNAdavyWWGdcpAAGHY0DFnd7+pl35m9hlJX49ZdFTS5S33L5N0bCM1Af0YdjGsUwYCCEOSZ2sX\n3X0huvtmSYdjuj0k6Sozu1LSzyTtkPQfkqoJw2Ojk8sM65SBAMKQ2DhnM/uCmru0XdITkv7c3RfM\n7EVqDpnaFvXbJum/qzmU6i53n1nvsRnnjKQxXhpAEjIf5+zuf9yh/ZikbS3390s6Y/wzkKVhnTIQ\nQBiYvhPoYBinDAQQBqbvBNYxCFMGAghD5ru1gUExTFMGAghD1jOEAQCANoQzAACBIZwBAAgM4QwA\nQGAIZwAAAkM4AwAQGMIZAIDAEM4AAASGcAYAIDCEMwAAgSGcAQAIDOEMAEBgCGcAAAJDOAMAEBjC\nGQCAwBDOAAAEhnAGACAwhDMAAIEhnAEACAzhDABAYAhnAAACc34SD2pmX5Z0dXT3eZJ+6e4vi+n3\nhKRlSb+RdMrdS0nUAwCDrNE4oVptXgsLx1UsblG5PKnx8c1Zl4UNSCSc3f2ta7fN7KOSGl263+ju\nzyRRBwAMupmZWVWrc1pZWT3dtmvXAVUqU9q9+/oMK8NGJBLOa8zMJP2RpNck+XsAYBjNzMxqz54H\nz2hfWVk93U5A51PSx5x/X9JT7v5oh+Uu6X4zO2hmO7s9kJntNLO6mdUXFxf7XigA5EmjcULV6lzX\nPtXqnJaWTqZUEfrpnMPZzL5lZodjvra3dHubpLu7PMx17v5ySW+Q9E4z6/gRz933uXvJ3UsTExPn\nWjYADIRabf45u7LjrKysqlabT6ki9NM579Z295u6LTez8yW9RdIrujzGsej702Z2j6RrJc2ea00A\nMCwWFo732G854UqQhCR3a98k6cfufjRuoZkVzGx07bakmyUdTrAeABgYxeKWHvuNJlwJkpBkOO9Q\n2y5tM3uRme2P7r5Q0pyZPSLpe5K+4e4HEqwHAAZGuTypQmGka59CYUTl8mRKFaGfEjtb293/NKbt\nmKRt0e3HJV2T1O8HgEE2Pr5ZlcpU7NnaayqVKY2NbUqxKvRLokOpAADJWRsm1T7OuVAYYZxzzpm7\nZ13DWSuVSl6v17MuAwCCsLR0MpohbFnF4qjK5Um2mANlZgd7mQ2TLWcAyLmxsU2ant6adRnoIy58\nAQBAYAhnAAACQzgDABAYwhkAgMAQzgAABIZwBgAgMIQzAACBIZwBAAgM4QwAQGCYIQzooNE4EU2J\neFzF4haVy5MaH9+cdVkAhgDhDMSYmZk942ICu3Yd4GICAFJBOANtZmZmYy/Dt7KyerqdgAaQJI45\nAy0ajROqVue69qlW57S0dDKligAMI8IZaFGrzT9nV3aclZVV1WrzKVUEYBgRzkCLhYXjPfZbTrgS\nAMOMcAZaFItbeuw3mnAlAIYZ4Qy0KJcnVSiMdO1TKIyoXJ5MqSIAw4hwBlqMj29WpTLVtU+lMqWx\nsU0pVQRgGDGUCmizNkyqfZxzoTDCOGcAqTB3z7qGs1Yqlbxer2ddBgbc0tLJaIawZRWLoyqXJ9li\nBrAhZnbQ3Uvr9WPLGehgbGyTpqe3Zl0GgCG0oWPOZvaHZvZDM/sXMyu1LauY2REz+4mZvb7Dz19p\nZt81s0fN7MtmdsFG6gEAYBBs9ISww5LeImm2tdHMJiXtkPRSSbdI+pSZnRfz8x+R9NfufpWkX0h6\n+wbrAQAg9zYUzu7+I3f/Scyi7ZK+5O4n3f2fJR2RdG1rBzMzSa+RVIuaPifpDzZSDwAAgyCpoVSX\nSnqy5f7RqK3V8yX90t1PdelzmpntNLO6mdUXFxf7WiwAACFZ94QwM/uWpEtiFu129691+rGYtvbT\nwnvp89sF7vsk7ZOaZ2t36gcAQN6tG87uftM5PO5RSZe33L9M0rG2Ps9Iep6ZnR9tPcf1AQBg6CS1\nW/teSTvMbJOZXSnpKknfa+3gzQHWD0oqR023Suq0JQ4AwNDY0CQkZvZmSZ+QNCHpl5IedvfXR8t2\nS5qWdErS7e5+X9S+X9J/cvdjZvYSSV+SdJGk/yPpP7r7uhfKNbNFST9ta75Yza3xvMp7/VL+n0Pe\n65fy/xzyXr/EcwhByPW/2N0n1uuUyxnC4phZvZdZV0KV9/ql/D+HvNcv5f855L1+iecQgrzXL3Hh\nCwAAgkM4AwAQmEEK531ZF7BBea9fyv9zyHv9Uv6fQ97rl3gOIch7/YNzzBkAgEExSFvOAAAMBMIZ\nAIDA5CacB+3ylFEND0dfT5jZwx36PWFmP4j61dOusxsz+4CZ/azleWzr0O+WaN0cMbP3pV1nJ2b2\nV2b2YzP7vpndY2bP69AvuHWw3t80mgDoy9Hy75rZFelXGc/MLjezB83sR9H/9K6YPjeYWaPltfX+\nLGrtZr3XhTX9TbQOvm9mL8+izjhmdnXL3/ZhM1sys9vb+gS3DszsLjN72swOt7RdZGYPRO/tD5jZ\nhR1+9taoz6Nmdmt6VZ8jd8/Fl6R/LelqSf8gqdTSPinpEUmbJF0p6TFJ58X8/P+UtCO6fYekv8j6\nObXU9lFJ7++w7AlJF2ddY4faPiDpv6zT57xonbxE0gXRuprMuvaotpslnR/d/oikj+RhHfTyN5X0\nDkl3RLd3SPpy1nW31FaU9PLo9qikf4qp/wZJX8+61nWeR9fXhaRtku5T8zoCr5L03axr7vJ6+r9q\nTo4R9DqQdL2kl0s63NL2l5LeF91+X9z/sZoTXT0efb8wun1h1s+n21dutpx9QC9PGdX2R5LuzrqW\nhFwr6Yi7P+7uv1ZzRrjtGdckSXL3+/23V0X7jprzu+dBL3/T7Wq+zqXm6/610Wstc+6+4O6HotvL\nkn6kLleky7Htkj7vTd9R81oCxayLivFaSY+5e/usi8Fx91lJz7Y1t77WO723v17SA+7+rLv/QtID\nkm5JrNA+yE04d9H3y1Om7PclPeXuj3ZY7pLuN7ODZrYzxbp69a5ol91dHXYn9bJ+QjCt5lZOnNDW\nQS9/09N9otd9Q83/g6BEu9u3SvpuzOJXm9kjZnafmb001cJ6s97rIi+v/R3qvHEQ+jqQpBe6+4LU\n/OAn6QUxffKyLk5b96pUabJALk/ZLz0+n7ep+1bzdd6ch/wFkh4wsx9Hnx5T0e05SPq0pA+p+bf8\nkJq756fbHyLmZ1Mbv9fLOrDmPPCnJH2xw8Nkug5iBPuaPxtmtkXS36s59/5S2+JDau5mPR6dy/BV\nNS+gE5L1Xhd5WAcXSHqTpErM4jysg14Fvy7aBRXOPmCXp1zv+ZjZ+ZLeIukVXR7jWPT9aTO7R81d\nmqkFQ6/rxMw+I+nrMYt6WT+J6WEd3CrpjZJe69HBqZjHyHQdxOjlb7rW52j0OhvXmbsDM2NmI2oG\n8xfd/Svty1vD2t33m9mnzOxidw/mYgY9vC4yfe336A2SDrn7U+0L8rAOIk+ZWdHdF6LDBk/H9Dmq\n5jH0NZepef5SsAZht3aeL095k6Qfu/vRuIVmVjCz0bXbap7AdDiubxbajp+9WfG1PSTpKmueLX+B\nmrvQ7k2jvvWY2S2S3ivpTe7+qw59QlwHvfxN71XzdS41X/ff7vThI23Rse87Jf3I3T/Woc8la8fI\nzexaNd+rfp5eld31+Lq4V9KfRGdtv0pSY233a0A67rkLfR20aH2td3pv/6akm83swujw281RW7iy\nPiOt1y813/yPSjop6SlJ32xZtlvNs1d/IukNLe37Jb0ouv0SNUP7iKS/k7QpgOf0PyTd1tb2Ikn7\nW2p+JPr6oZq7YjNfFy21fkHSDyR9X81/kGL7c4jub1PzjNzHQnoO0WvhSUkPR19rZzcHvw7i/qaS\nPqjmBw1J2hy9zo9Er/uXZF1zS+1Tau5S/H7L336bpNvW/h8kvSv6ez+i5sl6/y7rutueQ+zrou05\nmKS/jdbRD9QyyiSEL0m/o2bYjre0Bb0O1PwgsSBpNcqDt6t5LsX/kvRo9P2iqG9J0mdbfnY6+n84\nIunPsn4u630xfScAAIEZhN3aAAAMFMIZAIDAEM4AAASGcAYAIDCEMwAAgSGcAQAIDOEMAEBg/j86\nJjbQs2CFRgAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig = plt.figure(1)\n", "ax = plt.axes([0., 0., 1., 1.])\n", "\n", "s = 100\n", "plt.scatter(X_true[:, 0], X_true[:, 1], color='navy', s=s, lw=0,\n", " label='True Position')\n", "\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAD8CAYAAABzTgP2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGr5JREFUeJzt3X2QHPV95/H3ZxdjlVaqXYSeeJKBC6EOX52JsyXbxyWy\nY4xB5bKilJ0TJxJy6E4hCVXnqrur4KPKoXClKk5s55woMZENFRvpDHkwRmUJg3ByclwVY1YcwjIP\nRsa42CyshKRd9HDKnXa/98f0iplRz2h2d3q6e+bzqtranu7fzny3p2e+3f17UkRgZmY2oy/vAMzM\nrFicGMzMrIYTg5mZ1XBiMDOzGk4MZmZWw4nBzMxqODGYmVkNJwYzM6vhxGBmZjXOyzuAuVi6dGlc\nfvnleYdhZlYqe/fufSMilp2rXCkTw+WXX87IyEjeYZiZlYqkn7ZSzreSzMyshhODmZnVcGIwM7Ma\npaxj6GXHp6fYc2KCI1OnWdJ/HmsGhljU1593WGbWRZwYSmTb5DjbJw9yKqbPrNtydIyNg8u5ZXBF\njpGZWTdxYiiJbZPj3Dfx+lnrT8X0mfVODmbWDq5jKIHj01NsnzzYtMz2yYOcmJ7qUERm1s2cGEpg\nz4mJmttHaU7FNHtOTnQoIjPrZk4MJXBk6nRby5mZNePEUAJL+lurCmq1nJlZM21JDJLul3RQ0v6q\ndUsk7Zb0UvL7ggZ/e2tS5iVJt7Yjnm6zZmCIBWr+Vi1QH2sWDnUoIjPrZu26YvhL4Ma6dXcC346I\nq4BvJ49rSFoC/B7wHmA18HuNEkgvW9TXz8bB5U3LbBxczoD7M5hZG7QlMUTEd4AjdavXAV9Jlr8C\n/HLKn34Y2B0RRyLiKLCbsxOMUWmKumlo5VlXDgvUx6ahlW6qamZtk+VN6RUR8RpARLwmKe2U9xLg\n1arHo8k6S3HL4ArWL17KnpNVPZ8XDvlKwczaKu/aSqWsi9SC0mZgM8CqVauyjKnQBvr6WbvowrzD\nMLMulmWrpHFJFwEkv9N6aI0Cl1U9vhQYS3uyiNgaEcMRMbxs2TnnmTAzsznKMjHsAGZaGd0KPJJS\n5jHgBkkXJJXONyTrzMwsJ+1qrvo14B+BqyWNStoE/AHwIUkvAR9KHiNpWNKXASLiCPBp4Knk555k\nnZmZ5UQRqbf0C214eDg8taeZ2exI2hsRw+cql3flsxWM53swMycGO8PzPZgZODFYwvM9mNkMD6Jn\nnu/BzGo4MZjnezCzGk4M5vkezKyG6xjM8z3kxC3ArKj8STfWDAyx5ehY09tJnu+hvdwCzIrMt5LM\n8z102EwLsPpEPNMCbNvkeE6RmVU4MRjg+R46xS3ArAx8K8nO8HwP2ZtNCzAPr255cWKwGp7vIVtu\nAWZl4FtJZh3kFmBWBk4MZh20ZmDorHqcem4BZnlzYjDrILcAszLw9apZh8208Krvx7BAfe7HYIWQ\naWKQdDXwUNWqK4FPRcT/qCrzfirTfv4kWfX1iLgny7jM8uYWYFZkmSaGiHgRuBZAUj/wT8DDKUX/\nISI+kmUsZkXjFmBWVJ2sY/gg8OOI+GkHX9PMzGapk4lhA/C1BtveJ2mfpEclvbODMZmZWZ2OJAZJ\n5wMfBf46ZfPTwDsi4l3AnwLfaPAcmyWNSBo5dOhQdsGamfW4Tl0x3AQ8HRFnjQ4WEW9GxPFkeRfw\nNklLU8ptjYjhiBhetmxZ9hGbmfWoTiWGm2lwG0nSSklKllcnMR3uUFxmZlYn834MkhYCHwJ+s2rd\n7QARcS/wMeC3JJ0G/g+wISIi67jMzCxd5okhIk4CF9atu7dqeQuwJes4zMysNR4Sw8zMajgxmJlZ\nDScGMzOr4cRgZmY1nBjMzKyGE4OZmdVwYjAzsxpODGZmVsOJwczMajgxmJlZDScGMzOr4cRgZmY1\nnBjMzKyGE4OZmdVwYjAzsxpODGZmVqMTM7i9AhwDpoDTETFct13AF4C1wEngNyLi6azjMusGx6en\n2HNigiNTp1nSfx5rBoZY1Nefd1hWcpknhsQHIuKNBttuAq5Kft4DfDH5bWZNbJscZ/vkQU7F9Jl1\nW46OsXFwObcMrsgxMiu7ItxKWgd8NSq+BwxJuijvoMyKbNvkOPdNvF6TFABOxTT3TbzOtsnxnCKz\nbtCJxBDA45L2Stqcsv0S4NWqx6PJOjNLcXx6iu2TB5uW2T55kBPTUx2KyLpNJxLDdRHxbiq3jH5H\n0i/WbVfK30T9CkmbJY1IGjl06FAWcZqVwp4TE2ddKdQ7FdPsOTnRoYis22SeGCJiLPl9EHgYWF1X\nZBS4rOrxpcBYyvNsjYjhiBhetmxZVuGaFd6RqdNtLWdWL9PEIGlA0uKZZeAGYH9dsR3Ar6vivcBk\nRLyWZVxmZbakv7U2I62WM6uX9RXDCuC7kvYB3wd2RsS3JN0u6fakzC7gZeAA8CXgtzOOyazU1gwM\nsUDNP7oL1MeahUMdisi6TaanFBHxMvCulPX3Vi0H8DtZxmHWTRb19bNxcDn3TbzesMzGweUMuD+D\nzZGvNc1KaKafQn0/hgXqcz+GgiljJ0QnBrOSumVwBesXL2XPyaovnYVDvlIokLJ2QnRiMCuxgb5+\n1i66MO8wLMVMJ8R6M50QgcImhyL0fDYz6ypl74ToxGBm1mZl74ToxGBm1mZl74ToxGBm1mZl74To\nxGBm1mZl74ToxGBm1mYznRCbKXInxGJex5iZlVyZOyE6MZiZZaSsnRCdGMzMMlTGToiuYzAzsxpO\nDGZmVsOJwczMariOwTJTxuGGzSzDxCDpMuCrwEpgGtgaEV+oK/N+4BHgJ8mqr0fEPVnFZJ1T1uGG\nzSzbK4bTwH+JiKeTeZ/3StodEc/VlfuHiPhIhnFYh5V5uGEzy7COISJei4ink+VjwPPAJVm9nhVD\n2YcbNrMOVT5Luhz4OeDJlM3vk7RP0qOS3tmJeCw7ZR9uOG/Hp6fYeewwD0yMs/PYYY47gVoOMq98\nlrQI+FvgExHxZt3mp4F3RMRxSWuBbwBXNXiezcBmgFWrVmUYsc1H2YcbzpPrZawoMr1ikPQ2Kklh\ne0R8vX57RLwZEceT5V3A2yQtTXuuiNgaEcMRMbxs2bIsw7Z5KPtww3mZqZepv9qaqZfZNjmeU2TW\nizJLDJIE3Ac8HxGfb1BmZVIOSauTeA5nFZNlr+zDDefB9TJWNFleMVwH/BrwS5KeSX7WSrpd0u1J\nmY8B+yXtA/4E2BARkWFMlrGyDzecB9fLWNFkdj0fEd8FdI4yW4AtWcVg+SjzcMN5cL2MFY1v9Fom\nyjrccB5cL2NF4yPNMlPG4YbzsGZgiC1Hx5reTnK9TPt5yJbGnBjMcjZTL5PWW3yG62Xay02Dm3Ni\nMCsA18t0jodsOTcnBrOCcL1M9lptGrx+8dKe3u9ODGYF4nqZbM2maXAvvw+eqMfMeoabBrfGicHM\neoabBrfGiaENPCKmWTl4yJbW9HZabAM3ezMrj7I2De50nwsnhnlwszez8ilb0+A8Tj6dGObIzd7M\nyqssTYPzOvl0YpgjN3szK7eiNw3O8+TTlc9z5GZvZpalPIdjd2KYIzd7M7Ms5Xny6cQwR272ZmZZ\nyvPkM/PEIOlGSS9KOiDpzpTtb5f0ULL9SUmXZx1TO3imMjPLUp4nn5kmBkn9wJ8BNwHXADdLuqau\n2CbgaET8DPDHwGeyjKmdbhlcwaahlWe9eQvUx6ahlYVr9mZm5ZHnyWfWN8BXAwci4mUASQ8C64Dn\nqsqsA+5Olv8G2CJJZZn7uSzN3sysfPLqc5F1YrgEeLXq8SjwnkZlIuK0pEngQuCN6kKSNgObAVat\nWpVVvHNS9GZvZlZeeZx8Zp0YlLKu/kqglTJExFZgK8Dw8HApribMzNqh0yefWVc+jwKXVT2+FBhr\nVEbSecAgcCTjuMzMrIGsE8NTwFWSrpB0PrAB2FFXZgdwa7L8MeDvylK/YGbWjTK9lZTUGdwBPAb0\nA/dHxA8l3QOMRMQO4D7gAUkHqFwpbMgyJjMzay7zbrkRsQvYVbfuU1XLp4CPZx2HmZm1pmfGa+j0\neOZmZmXVE4nBk+lY2fhExvLU9YnBk+lY2fhExvLW1YPotTqe+QnP0WwFMXMiUz/c8syJzLbJ8Zwi\ns17S1Ykhz/HMzWbLJzJWFF2dGDyZjpWJT2SsKLo6MXgyHSsTn8hYUXR1YvBkOlYmPpGxoujqxODJ\ndKxMfCJjRdHViQE8mU7ZHJ+eYuexwzwwMc7OY4c53kMVrT6RsaLoiWtST6ZTDm6/n9/ELGbVeiIx\ngCfTKTp3RHyLT2Qsbz2TGKy4Wm2/v37x0p75cvSJjOWp6+sYrPjcft+sWJwYLHduv29WLE4Mlju3\n3zcrlkwSg6Q/kvSCpGclPSwpteG1pFck/UDSM5JGsojFis/t982KJasrht3Av4qIfw38CPhkk7If\niIhrI2I4o1is4Nx+36xYMkkMEfF4RMzcEP4ecGkWr2Pdwx0RzYqjEzdtbwMearAtgMclBfAXEbG1\n0ZNI2gxsBli1alXbg7T8uf2+WTHMOTFIegJYmbLproh4JClzF3Aa2N7gaa6LiDFJy4Hdkl6IiO+k\nFUySxlaA4eHhmGvcVmxuv2+Wvzknhoi4vtl2SbcCHwE+GBGpX+QRMZb8PijpYWA1kJoYzMysM7Jq\nlXQj8LvARyPiZIMyA5IWzywDNwD7s4jHzMxal1WrpC3AYiq3h56RdC+ApIsl7UrKrAC+K2kf8H1g\nZ0R8K6N4zMysRZlUPkfEzzRYPwasTZZfBt6VxeubmdncueezmZnVcGIwM7MaTgxmZlbDicHMzGo4\nMZiZWQ0nBjMzq9FzA9wfn55iz4mqsXgGhljksXjMzM7oqcSwbXKc7ZMHa6aR3HJ0jI2Dy7t+9E4n\nRLPO6IbPWs8khm2T49w38fpZ60/F9Jn13ZocejkhmnVSt3zWeqKO4fj0FNsnDzYts33yICempzoU\nUefMJMTqAxXeSojbJsdzisysu3TTZ60nEsOeExNnvVn1TsU0e05OdCiizujlhGjWSd32WeuJxHBk\n6vS5C82iXFn0akI067Ru+6z1RGJY0t9aVUqr5cqiVxOiWad122etJxLDmoGhs+YSrrdAfaxZONSh\niDoj74R4fHqKnccO88DEODuPHeZ4SS6jzWYr789au/VEYljU18/GweVNy2wcXN51cwvnmRC3TY7z\n8dHn+OyRUe6ffJ3PHhnl46PPlaoCzqxV3Xby2ROJASpNUTcNrTzrzVugPjYNrSxVU7JW5ZUQu6l1\nhlkruu3kM7PrGkl3A/8JOJSs+u8RsSul3I3AF4B+4MsR8QdZxXTL4ArWL17KnpNVnU8WDpXmzZqL\nmYRX37Z6gfoyaVvdauuM9YuXNt3v3dBJyHpLpz9rWVJEZPPElcRwPCI+26RMP/Aj4EPAKPAUcHNE\nPNfsuYeHh2NkZKSN0Xa/E9NTHUmIO48d5rNHRs9Z7r9deClrF12Yui2tk1AZP1zWmzr1WZsLSXsj\nYvhc5fKuCVkNHEim+UTSg8A6oGlisNkb6Otv+EXcTvNtndHLPdStO3Tqs5alrOsY7pD0rKT7JV2Q\nsv0S4NWqx6PJurNI2ixpRNLIoUOH0opYAcyndUa3dRIyK6t5JQZJT0jan/KzDvgi8C+Aa4HXgM+l\nPUXKutR7WxGxNSKGI2J42bJl8wnbMjSf1hnd1knIrKzmdSspIq5vpZykLwHfTNk0ClxW9fhSYGw+\nMVm+ZlpnpN0OmtGodUa3dRIyK6vMbiVJuqjq4Xpgf0qxp4CrJF0h6XxgA7Ajq5isM+baNLjbOgmZ\nlVWWn7A/lHQtlVtDrwC/CSDpYirNUtdGxGlJdwCPUWmuen9E/DDDmKxD5tI0eM3AEFuOjjW9nVSm\nTkJmZZVZYoiIX2uwfgxYW/V4F3BW/wYrv9m2zpjPbSgzax9fk1uhdFMnIbOycmKwwunFHupmReLE\nYIXUDZ2EzMqqZwbRMzOz1jgxmJlZDScGMzOr4cRgZmY1nBjMzKyGE4OZmdVwYjAzsxpODGZmVsOJ\nwczMajgxmJlZDScGMzOr4cRgZmY1PIiemRXW8ekp9pyoGmV3YIhFHmU3c5kkBkkPAVcnD4eAiYi4\nNqXcK8AxYAo4HRHDWcRjZuWzbXL8rHk5thwd87wcHZBJYoiIfzezLOlzwGST4h+IiDeyiMPMymnb\n5HjqTH6nYvrMeieH7GRaxyBJwK8CX8vydcysexyfnmL75MGmZbZPHuTE9FSHIuo9WVc+/wIwHhEv\nNdgewOOS9kra3OyJJG2WNCJp5NChQ20P1MyKYc+JiZrbR2lOxTR7Tk50KKLeM+dbSZKeAFambLor\nIh5Jlm+m+dXCdRExJmk5sFvSCxHxnbSCEbEV2AowPDwcc43bzIrtyNTptpaz2ZtzYoiI65ttl3Qe\n8CvAzzd5jrHk90FJDwOrgdTEYGa9YUl/a19LrZaz2cvyVtL1wAsRMZq2UdKApMUzy8ANwP4M4zGz\nElgzMMQCNf9qWqA+1iwc6lBEvSfLxLCButtIki6WtCt5uAL4rqR9wPeBnRHxrQzjMbMSWNTXz8bB\n5U3LbBxczoD7M2Qms2uxiPiNlHVjwNpk+WXgXVm9vpmV10xT1Pp+DAvU534MHeCbdGZWSLcMrmD9\n4qXsOVnV83nhkK8UOsCJwcwKa6Cvn7WLLsw7jJ7jQfTMzKyGE4OZmdVwYjAzsxpODGZmVsOJwczM\narhVkhWKJ2Yxy58TgxWGJ2YxKwYnBisET8xiVhyuY7DceWIWs2JxYrDceWIWs2JxYrDceWIWs2Jx\nYrDceWIWs2JxYrDceWIWs2JxYrDceWIWs2KZV2KQ9HFJP5Q0LWm4btsnJR2Q9KKkDzf4+yskPSnp\nJUkPSTp/PvFYed0yuIJNQyvPunJYoD42Da10U1WzDprvTdv9wK8Af1G9UtI1VKb2fCdwMfCEpJ+N\niPr2hp8B/jgiHpR0L7AJ+OI8Y7KS8sQsZsUwr8QQEc8DSKrftA54MCL+GfiJpAPAauAfZwqo8ke/\nBPz7ZNVXgLtxYuhpnpjFLH9Z1TFcArxa9Xg0WVftQmAiIk43KXOGpM2SRiSNHDp0qK3BmpnZW855\nxSDpCWBlyqa7IuKRRn+Wsi7mUOatDRFbga0Aw8PDDcuZmdn8nDMxRMT1c3jeUeCyqseXAmN1Zd4A\nhiSdl1w1pJUxM7MOy6rH0A7gf0r6PJXK56uA71cXiIiQ9PfAx4AHgVuBRlcgNfbu3fuGpJ9WrVpK\nJdEUSRFjgmLGVcSYwHHNRhFjAsdV7x2tFFLE3O/KSFoP/CmwDJgAnomIDyfb7gJuA04Dn4iIR5P1\nu4D/GBFjkq6kkhSWAP8buCWpsJ5tHCMRMXzukp1TxJigmHEVMSZwXLNRxJjAcc3VfFslPQw83GDb\n7wO/n7J+bdXyy1RaK5mZWUG457OZmdXolsSwNe8AUhQxJihmXEWMCRzXbBQxJnBcczKvOgYzM+s+\n3XLFYGZmbVKKxFCGwfqS530m+XlF0jMNyr0i6QdJuZF2x5HyendL+qeq2NY2KHdjsg8PSLoz45j+\nSNILkp6V9LCk1PG0O7WvzvW/S3p78v4eSI6jy7OKJXm9yyT9vaTnk+P+P6eUeb+kyar39VNZxlT1\nuk3fE1X8SbKvnpX07g7EdHXVfnhG0puSPlFXpiP7S9L9kg5K2l+1bomk3cn3z25JFzT421uTMi9J\nujWL+FoWEYX/Af4lcDXwv4DhqvXXAPuAtwNXAD8G+lP+/q+ADcnyvcBvZRzv54BPNdj2CrC0g/vu\nbuC/nqNMf7LvrgTOT/bpNRnGdANwXrL8GeAzee2rVv534LeBe5PlDcBDGcd0EfDuZHkx8KOUmN4P\nfLNTx1Gr7wmwFniUysgG7wWe7HB8/cDrwDvy2F/ALwLvBvZXrftD4M5k+c60451Kk/2Xk98XJMsX\ndPr9nfkpxRVDRDwfES+mbDozWF9E/ASYGazvjKrB+v4mWfUV4JezijV5vV8FvpbVa2RgNXAgIl6O\niP9LpW/JuqxeLCIej7fGyPoelV7veWnlf19H5biBynH0QaWMHNkuEfFaRDydLB8DnqfJOGIFsw74\nalR8j8roBhd18PU/CPw4In56zpIZiIjvAEfqVlcfP42+fz4M7I6IIxFxFNgN3JhZoOdQisTQRNsH\n62uDXwDGI+KlBtsDeFzSXkmbM4yj2h3JZf39DS5jW9mPWbmNyhlmmk7sq1b+9zNlkuNokspxlbnk\nttXPAU+mbH6fpH2SHpX0zk7Ew7nfkzyPJahc0TU6KctjfwGsiIjXoJL0gbRZqfLebzUKM4muCjJY\nXzMtxngzza8WrotKr+/lwG5JLyRnGXPWLC4qw5h/msr//Gkqt7luq3+KlL+dV3O1VvaVKr3jTwPb\nGzxN2/dVWqgp6zI7hmZD0iLgb6mMHPBm3eanqdwuOZ7UG32DytAzWTvXe5LLvgJI6g4/CnwyZXNe\n+6tVue23NIVJDFGCwfrOFaOk86hMXPTzTZ5jLPl9UNLDVG5lzOvLrtV9J+lLwDdTNrWyH9saU1K5\n9hHgg5HcZE15jrbvqxSt/O8zZUaT93iQs28XtJWkt1FJCtsj4uv126sTRUTskvTnkpZGRKbj77Tw\nnrT9WJqFm4CnI2K8fkNe+ysxLumiiHgtua12MKXMKJV6kBmXUqlTzUXZbyXtADYkrUauoMFgfcDM\nYH0wi8H65uB64IWIGE3bKGlA0uKZZSqVsPvTyrZL3f3d9Q1e7yngKlVab51P5XJ8R4Yx3Qj8LvDR\niDjZoEyn9lUr//sOKscNVI6jv2uUzNohqb+4D3g+Ij7foMzKmXoOSaupfJYPZxVT8jqtvCc7gF9P\nWie9F5icuY3SAQ2v1vPYX1Wqj59G3z+PATdIuiC53XtDsi4fedV6z+aHyhfaKPDPwDjwWNW2u6i0\nKnkRuKlq/S7g4mT5SioJ4wDw18DbM4rzL4Hb69ZdDOyqimNf8vNDKrdVst53DwA/AJ6lcoBeVB9X\n8ngtldYvP846ruR9eBV4Jvm5tz6mTu6rtP8duIdK4gJYkBw3B5Lj6MqM98+/pXIb4dmqfbQWuH3m\n+ALuSPbLPioV+P+mA8dS6ntSF5eAP0v25Q+oakWYcWwLqXzRD1at6/j+opKYXgP+X/KdtYlKfdS3\ngZeS30uSssPAl6v+9rbkGDsA/IdO7LdGP+75bGZmNcp+K8nMzNrMicHMzGo4MZiZWQ0nBjMzq+HE\nYGZmNZwYzMyshhODmZnVcGIwM7Ma/x8pl+hUX7b8SAAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.scatter(pos[:, 0], pos[:, 1], color='turquoise', s=s, lw=0, label='MDS')\n", "\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAD8CAYAAABzTgP2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGi9JREFUeJzt3X2wXPV93/H3p3BRJzcgwAgQD7KgQUxxXYO9I8ulydgB\nY9B4rNijpKLThBSnMklg8Ew7E6iow2A0xEntxAmpQTZM7NQ1NMQY1RYG4dBxzOQirigC2TzJPAyK\nVBDGvjJyeys53/5xzlq7q7N7n/a355zdz2vmzj37O7+7+71n997vOef3pIjAzMys6R+VHYCZmVWL\nE4OZmbVxYjAzszZODGZm1saJwczM2jgxmJlZGycGMzNr48RgZmZtnBjMzKzN0WUHMB8nnXRSLF++\nvOwwzMxqZfv27a9HxJKZ6tUyMSxfvpzJycmywzAzqxVJL8+mnm8lmZlZGycGMzNr48RgZmZtatnG\nMNKmp+C5e+DAXhhfCivWwqLFZUdlZkPEiaFOJjbCtlvg4IHDZQ9fCyuvh1UbyovLzIaKE0NdTGyE\nR244svzggcPlTg5m1gduY6iD6ansSqGXbbfA9P7BxGNmQ82JoQ6eu6f99lGRgweyemZmC+TEUAcH\n9va3nplZD04MdTC+tL/1zMx66EtikHSnpNck7WwpO1HSVknP599P6PKzV+R1npd0RT/iGTor1sLY\neO86Y+NZPTOzBerXFcNfAJd2lF0HfCsizgG+lT9uI+lE4PeBdwMrgd/vlkBG2qLFWZfUXlZeD4uO\nG0w8ZjbU+pIYIuLbwBsdxWuAL+bbXwR+peBHPwBsjYg3IuKHwFaOTDAGWVfUC28+8sphbDwrd1dV\nM+uTlOMYTomIvQARsVfSyQV1TgdeaXm8Oy+zIqs2wAXXFIx89pWCmfVP2QPcVFAWhRWl9cB6gGXL\nlqWMqdoWHQdvv7LsKMxsiKXslfSqpKUA+ffXCursBs5seXwGsKfoySJiU0Q0IqKxZMmM60yYmdk8\npUwMm4FmL6MrgPsK6jwAXCLphLzR+ZK8zMzMStKv7qpfAf4OOFfSbkkfBf4AeL+k54H354+R1JD0\nBYCIeAP4JPBY/nVTXmZmZiVRROEt/UprNBrhpT3NzOZG0vaIaMxUr+zGZ6sar/dgNvKcGOwwr/dg\nZjgxWJPXezCznCfRM6/3YGZtnBjM6z2YWRsnBvN6D2bWxm0M5vUeyuIeYFZRTgyW/UN6+Nret5O8\n3kN/uQeYVZhvJZnXexi0Zg+wzkTc7AE2sbGcuMxyTgyW8XoPg+EeYFYDvpVkh3m9h/Tm0gPM06tb\nSZwYrJ3Xe0jLPcCsBnwryWyQ3APMasCJwWyQVqw9sh2nk3uAWcmcGMwGyT3ArAbcxmA2aM0eXp3j\nGMbGPY7BKiFpYpB0LnB3S9HZwCci4k9a6ryXbNnPF/Oir0bETSnjMiude4BZhSVNDBHxLHA+gKSj\ngL8H7i2o+rcR8cGUsZhVjnuAWUUNso3hIuD7EfHyAF/TzMzmaJCJYR3wlS773iNph6T7Jb1tgDGZ\nmVmHgSQGSccAHwL+qmD348BbI+IdwJ8BX+vyHOslTUqa3LdvX7pgzcxG3KCuGC4DHo+IVzt3RMT+\niHgz394CjEk6qaDepohoRERjyZIl6SM2MxtRg0oMl9PlNpKkUyUp316Zx/SDAcVlZmYdko9jkPRz\nwPuBj7WUXQUQEbcBa4HflnQI+D/AuoiI1HGZmVmx5IkhIn4CvKWj7LaW7VuBW1PHYWZms+MpMczM\nrI0Tg5mZtXFiMDOzNk4MZmbWxonBzMzaODGYmVkbJwYzM2vjxGBmZm2cGMzMrI0Tg5mZtXFiMDOz\nNk4MZmbWxonBzMzaODGYmVkbJwYzM2vjxGBmZm0GsYLbS8CPgZ8ChyKi0bFfwGeB1cBPgN+MiMdT\nx2U2FKan4Ll74MBeGF8KK9bCosVlR2U1lzwx5N4XEa932XcZcE7+9W7gc/l3M+tlYiNsuwUOHjhc\n9vC1sPJ6WLWhvLis9qpwK2kN8KXITADHS1padlBmlTaxER65oT0pQPb4kRuy/WbzNIjEEMCDkrZL\nWl+w/3TglZbHu/MyMysyPZVdKfSy7RaY3j+YeGzoDCIxXBgR7yS7ZfS7kn6pY78KfiY6CyStlzQp\naXLfvn0p4jSrh+fuOfJKodPBA1k9s3lInhgiYk/+/TXgXmBlR5XdwJktj88A9hQ8z6aIaEREY8mS\nJanCNau+A3v7W8+sQ9LEIGlc0rHNbeASYGdHtc3AbyizCpiKCH+izboZn2UT3GzrmXVIfcVwCvAd\nSTuAbcA3IuKbkq6SdFVeZwvwArAL+DzwO4ljMqu3FWthbLx3nbHxrJ7ZPCTtrhoRLwDvKCi/rWU7\ngN9NGYfZUFm0OOuS+sgN3eusvB4WHTe4mGyoDGocg5n1U3OcQuc4hrFxj2OomhoOQlR2wl4vjUYj\nJicnyw7DrHzT+wv+6fhKoTKKBiGWmLwlbe+cfaKIrxjM6mzRcfD2K8uOwoo0ByF2ag5ChMpe2VVh\n5LOZ2XCp+SBEJwYzs36r+SBEJwYzs36r+SBEJwYzs36r+SBEJwYzs36r+SBEJwYzs35rDkLspcKD\nEN1d1cwshRoPQnRiMDNLZdUGuOCa2g1CdGIwM0uphoMQ3cZgZmZtnBjMzKyNE4OZmbVxG4OlU8Pp\nhs0sYWKQdCbwJeBU4B+ATRHx2Y467wXuA17Mi74aETeliskGqGi64YevrXw3PTNLe8VwCPj3EfF4\nvu7zdklbI+J7HfX+NiI+mDAOG7QaTzdsZgnbGCJib0Q8nm//GHgaOD3V61lF1Hy6YTMbUOOzpOXA\nBcCjBbvfI2mHpPslvW0Q8VhCNZ9uuHTTU/DUHTBxc/Z9eqrsiGwEJW98lvTzwF8DH4+IztPEx4G3\nRsSbklYDXwPO6fI864H1AMuWLUsYsS1IzacbLpXbZawikl4xSBojSwpfjoivdu6PiP0R8Wa+vQUY\nk3RS0XNFxKaIaEREY8mSJSnDtoWo+XTDpWm2y3RebTXbZSY2lhOXjaRkiUGSgDuApyPiM13qnJrX\nQ9LKPJ4fpIrJBqDm0w2Xwu0yVjEprxguBH4d+GVJT+RfqyVdJemqvM5aYKekHcCfAusiIhLGZKnV\nfLrhUrhdxiomWRtDRHwH0Ax1bgVuTRWDlaTG0w2Xwu0yVjEe+Wxp1HS64VK4XcYqxonB0qnhdMOl\nWLE2633U63aS22X6z1O2dOXEYFa2ZrtM0WjxJrfL9Je7BvfkxGBWBW6XGRxP2TIj1bETUKPRiMnJ\nybLDMOu/6f1ul0lpegpuP33m23Yf2zOUx13S9ohozFTPVwxmVeJ2mbTm0jV4hN8HL9RjZqPDXYNn\nxYnBzEaHuwbPihNDP3hGTLN68JQts+I2hoVytzez+qhr1+ABj7lwYlgId3szq5+6dQ0u4eTT3VXn\na8S7vZnVXh26Bnc7+Wy68OY5JQd3V03N3d7M6q3qXYNnOx37Bdf0PaG58Xm+3O3NzFIqcTp2J4b5\ncrc3M0upxJNPJ4b5crc3M0upxJPP5IlB0qWSnpW0S9J1BfsXSbo73/+opOWpY+oLr1RmZimVePKZ\nNDFIOgr4c+Ay4DzgcknndVT7KPDDiPgF4I+BT6WMqa9Wbch6BXS+eWPjc+4tYGbWpsSTz9S9klYC\nuyLiBQBJdwFrgO+11FkD3Jhv3wPcKkm1WfvZK5WZWSoljblInRhOB15pebwbeHe3OhFxSNIU8Bbg\n9dZKktYD6wGWLVuWKt75qXq3NzOrrxJOPlMnBhWUdV4JzKYOEbEJ2ATZALeFh2ZmVhMDPvlM3fi8\nGziz5fEZwJ5udSQdDSwG3kgcl5mZdZE6MTwGnCPpLEnHAOuAzR11NgNX5Ntrgb+pTfuCmdkQSnor\nKW8zuBp4ADgKuDMivivpJmAyIjYDdwB/KWkX2ZXCupQxmZlZb8nnSoqILcCWjrJPtGz/X+BXU8dh\nZmazMzqT6A14PnMzs7oajcTgxXSsbnwiYyUa/sTgxXSsbnwiYyUb7kn0Zjuf+fT+wcRjNpPmiUzn\ndMvNE5mJjeXEZSNluBNDifOZm82ZT2SsIoY7MXgxHasTn8hYRQx3YvBiOlYnPpGxihjuxODFdKxO\nfCJjFTHcicGL6Vid+ETGKmK4EwN4MZ26mZ6Cp+6AiZuz79NTZUc0OD6RsYpQHeerazQaMTk5Obcf\nmt7vxXSqrqj/fuIFSSrJx8ESkbQ9Ihoz1huZxGDV1m0gYtOoXd35RMYSmG1iGP6Rz1Z9s+2/f8E1\no/PP0asCWomGv43Bqs/9980qxYnByuf++2aV4sRg5XP/fbNKSZIYJP2RpGckPSnpXknHd6n3kqSn\nJD0hya3Jo8r9980qJdUVw1bgn0XEPweeA3p1zn5fRJw/m5ZyG1Luv29WKUkSQ0Q8GBGH8ocTwBkp\nXseGiAcimlVG8nEMkv4HcHdE/NeCfS8CPwQCuD0iNvV4nvXAeoBly5a96+WXX04UsZXK/ffNkkk+\nwE3SQ8CpBbs2RMR9eZ0NQAP4SBS8kKTTImKPpJPJbj9dExHfnum1PcDNzGzukg9wi4iLZwjgCuCD\nwEVFSSF/jj3599ck3QusBGZMDGZmlk6qXkmXAr8HfCgiftKlzrikY5vbwCXAzhTxmJnZ7KXqlXQr\ncCywNe+Kehtkt44kbcnrnAJ8R9IOYBvwjYj4ZqJ4zMxslpLMlRQRv9ClfA+wOt9+AXhHitc3M7P5\n88hnMzNr48RgZmZtnBjMzKyNE4OZmbVxYjAzszZODGZm1mb0lvacniqYi2dx2VGZmVXGaCWGiY3Z\n2sGty0g+fG02pfOwz97phGg2GEPwtzY6iWFiIzxyw5HlBw8cLh/W5DDKCdFskIbkb2002himp7I3\nq5dtt2RTPg+bZkJs/aDC4YQ4sbGcuMyGzRD9rY1GYnjuniPfrE4HD2T1hskoJ0SzQRqyv7XRSAwH\n9va3Xl2MakI0G7Qh+1sbjcQwvrS/9epiVBOi2aAN2d/aaCSGFWuPXEu409h4Vm+YlJ0Qp6fgqTtg\n4ubs+/RUmtcxK1vZf2t9NhqJYdHirFdALyuvH761hctMiBMb4fbT4cHfgkf+U/b99tNr1QBnNmtD\ndvI5GokBsq5iF9585Js3Np6V16gr2ayVlRCHqHeG2awM2cmnuizHvPAnlm4E/h2wLy/6jxGxpaDe\npcBngaOAL0TEH8z03I1GIyYnJ+cX2PT+gsEn9Xiz5q2ob/XYeJq+1dNT2ZVBr4a4sXH42J7ex30I\nBgnZCBrk39o8SNoeEY0Z6yVODG9GxH/uUeco4Dng/cBu4DHg8oj4Xq/nXlBiGFWDSohP3ZHdNprJ\nJXfA268s3lfxPy6znip88jnbxFD2yOeVwK58mU8k3QWsAXomBpuHRcd1/0fcTwvtnTHKI9RtOAzq\nby2h1G0MV0t6UtKdkk4o2H868ErL49152REkrZc0KWly3759RVWsChbSO2PIBgmZ1dWCEoOkhyTt\nLPhaA3wO+CfA+cBe4NNFT1FQVnhvKyI2RUQjIhpLlixZSNiW0kJ6ZwzZICGzulrQraSIuHg29SR9\nHvh6wa7dwJktj88A9iwkJitZs3dG0e2gpm69M4ZskJBZXSW7lSSp9V7Bh4GdBdUeA86RdJakY4B1\nwOZUMdmAzLdr8JANEjKrq5SNz38o6XyyW0MvAR8DkHQaWbfU1RFxSNLVwANk3VXvjIjvJozJBmXV\nBrjgmrn1zlixNpuieKaurjUZJGRWV8kSQ0T8epfyPcDqlsdbgCPGN9gQmGvvjIXchjKzvim7u6pZ\nu+ZtJo9jMCuNE4NVz3xuQ5lZ3zgxWDUNwSAhs7oanUn0zMxsVpwYzMysjRODmZm1cWIwM7M2Tgxm\nZtbGicHMzNo4MZiZWRsnBjMza+PEYGZmbZwYzMysjRODmZm1cWIwM7M2nkTPzKpreqpglt3FZUc1\n9JIkBkl3A+fmD48HfhQR5xfUewn4MfBT4FBENFLEY2Y1NLHxyHU5Hr7W63IMQJLEEBH/qrkt6dPA\nVI/q74uI11PEYWY1NbGxeCW/gwcOlzs5JJO0jUGSgF8DvpLydcxsiExPZVcKvWy7Bab3DyaeEZS6\n8fkXgVcj4vku+wN4UNJ2Set7PZGk9ZImJU3u27ev74GaWUU8d0/77aMiBw9k9SyJed9KkvQQcGrB\nrg0RcV++fTm9rxYujIg9kk4Gtkp6JiK+XVQxIjYBmwAajUbMN24zq7gDe/tbz+Zs3okhIi7utV/S\n0cBHgHf1eI49+ffXJN0LrAQKE4OZjYjxpf2tZ3OW8lbSxcAzEbG7aKekcUnHNreBS4CdCeMxszpY\nsRbGxnvXGRvP6lkSKRPDOjpuI0k6TdKW/OEpwHck7QC2Ad+IiG8mjMfM6mDR4qxLai8rr4dFxw0m\nnhGUbIBbRPxmQdkeYHW+/QLwjlSvb2Y11uyK2jmOYWzc4xgGwCOfzayaVm2AC64pGPnsK4XUnBjM\nrLoWHQdvv7LsKEaOJ9EzM7M2TgxmZtbGicHMzNo4MZiZWRsnBjMza+NeSVYtXpjFrHRODFYdXpjF\nrBKcGKwavDCLWWW4jcHK54VZzCrFicHK54VZzCrFicHK54VZzCrFicHK54VZzCrFicHK54VZzCrF\nicHK54VZzCplQYlB0q9K+q6kf5DU6Nh3vaRdkp6V9IEuP3+WpEclPS/pbknHLCQeq7FVG+DCm4+8\nchgbz8rdVdVsYBY6jmEn8BHg9tZCSeeRLe35NuA04CFJKyLipx0//yngjyPiLkm3AR8FPrfAmKyu\nvDCLWSUsKDFExNMAkjp3rQHuiohp4EVJu4CVwN81Kyj7oV8G/nVe9EXgRpwYRpsXZjErXao2htOB\nV1oe787LWr0F+FFEHOpR52ckrZc0KWly3759fQ3WzMwOm/GKQdJDwKkFuzZExH3dfqygLOZR5/CO\niE3AJoBGo9G1npmZLcyMiSEiLp7H8+4Gzmx5fAawp6PO68Dxko7OrxqK6piZ2YClmkRvM/DfJH2G\nrPH5HGBba4WICEkPA2uBu4ArgG5XIG22b9/+uqSXW4pOIks0VVLFmKCacVUxJnBcc1HFmMBxdXrr\nbCopYv53ZSR9GPgzYAnwI+CJiPhAvm8DcCVwCPh4RNyfl28Bfisi9kg6mywpnAj8L+Df5A3Wc41j\nMiIaM9ccnCrGBNWMq4oxgeOaiyrGBI5rvhbaK+le4N4u+zYCGwvKV7dsv0DWW8nMzCrCI5/NzKzN\nsCSGTWUHUKCKMUE146piTOC45qKKMYHjmpcFtTGYmdnwGZYrBjMz65NaJIY6TNaXP+8T+ddLkp7o\nUu8lSU/l9Sb7HUfB690o6e9bYlvdpd6l+THcJem6xDH9kaRnJD0p6V5Jx3epN5BjNdPvLmlR/v7u\nyj9Hy1PFkr/emZIelvR0/rm/tqDOeyVNtbyvn0gZU8vr9nxPlPnT/Fg9KemdA4jp3Jbj8ISk/ZI+\n3lFnIMdL0p2SXpO0s6XsRElb8/8/WyWd0OVnr8jrPC/pihTxzVpEVP4L+KfAucD/BBot5ecBO4BF\nwFnA94GjCn7+vwPr8u3bgN9OHO+ngU902fcScNIAj92NwH+Yoc5R+bE7GzgmP6bnJYzpEuDofPtT\nwKfKOlaz+d2B3wFuy7fXAXcnjmkp8M58+1jguYKY3gt8fVCfo9m+J8Bq4H6ymQ1WAY8OOL6jgP8N\nvLWM4wX8EvBOYGdL2R8C1+Xb1xV93sm67L+Qfz8h3z5h0O9v86sWVwwR8XREPFuw62eT9UXEi0Bz\nsr6faZmsr7lg8BeBX0kVa/56vwZ8JdVrJLAS2BURL0TE/yMbW7Im1YtFxINxeI6sCbJR72WZze++\nhuxzA9nn6CIVzBzZLxGxNyIez7d/DDxNj3nEKmYN8KXITJDNbjDIpfcuAr4fES/PWDOBiPg28EZH\ncevnp9v/nw8AWyPijYj4IbAVuDRZoDOoRWLooe+T9fXBLwKvRsTzXfYH8KCk7ZLWJ4yj1dX5Zf2d\nXS5jZ3McU7mS7AyzyCCO1Wx+95/VyT9HU2Sfq+Ty21YXAI8W7H6PpB2S7pf0tkHEw8zvSZmfJciu\n6LqdlJVxvABOiYi9kCV94OSCOmUftzappsSYM1Vksr5eZhnj5fS+WrgwslHfJwNbJT2Tn2XMW6+4\nyKYx/yTZ7/xJsttcnfNa9+0YzSam5rFSNjr+EPDlLk/T92NVFGpBWbLP0FxI+nngr8lmDtjfsftx\nstslb+btRl8jm3omtZnek1KOFUDedvghoGg5wLKO12yVdtyKVCYxRA0m65spRklHky1c9K4ez7En\n//6apHvJbmUs6J/dbI+dpM8DXy/YNZvj2NeY8sa1DwIXRX6TteA5+n6sCszmd2/W2Z2/x4s58nZB\nX0kaI0sKX46Ir3bub00UEbFF0n+RdFJEJJ1/ZxbvSd8/S3NwGfB4RLzauaOs45V7VdLSiNib31Z7\nraDObrJ2kKYzyNpUS1H3W0mbgXV5r5Gz6DJZH9CcrA/mMFnfPFwMPBMRu4t2ShqXdGxzm6wRdmdR\n3X7puL/74S6v9xhwjrLeW8eQXY5vThjTpcDvAR+KiJ90qTOoYzWb330z2ecGss/R33RLZv2Qt1/c\nATwdEZ/pUufUZjuHpJVkf8s/SBVT/jqzeU82A7+R905aBUw1b6MMQNer9TKOV4vWz0+3/z8PAJdI\nOiG/3XtJXlaOslq95/JF9g9tNzANvAo80LJvA1mvkmeBy1rKtwCn5dtnkyWMXcBfAYsSxfkXwFUd\nZacBW1ri2JF/fZfstkrqY/eXwFPAk2Qf0KWdceWPV5P1fvl+6rjy9+EV4In867bOmAZ5rIp+d+Am\nssQF8I/zz82u/HN0duLj8y/JbiM82XKMVgNXNT9fwNX5cdlB1oD/LwbwWSp8TzriEvDn+bF8ipZe\nhIlj+zmyf/SLW8oGfrzIEtNe4GD+P+ujZO1R3wKez7+fmNdtAF9o+dkr88/YLuDfDuK4dfvyyGcz\nM2tT91tJZmbWZ04MZmbWxonBzMzaODGYmVkbJwYzM2vjxGBmZm2cGMzMrI0Tg5mZtfn/e7I+8a6k\nLVAAAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.scatter(npos[:, 0], npos[:, 1], color='darkorange', s=s, lw=0, label='NMDS')\n", "plt.show()" ] } ], "metadata": { "celltoolbar": "Raw Cell Format", "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.2" } }, "nbformat": 4, "nbformat_minor": 1 }